
Clause creation and destruction

b) Else unifies Head with Clause and true with Body,

c) Searches sequentially through each dynamic user-defined
procedure in the database and creates a list L of all the terms
clause(H, B) such that

1) the database contains a clause whose head can be
converted to a term H, and whose body coan be converted
to a term B, and

2) H unifies with Head, and

3) B unifies with Body.

d) If a non-empty list is found, proceeds to 8.9.3.1 f,

e) Else the predicate fails.

f) Chooses the first element of the list L, removes the
clause corresponding to it from the database, and the predicate
succeeds.

g) If all the elements of the list L have been chosen, then
the predicate fails,

h) Else chooses the first element of the list L which has
not already been chosen, removes the clause, if it exists,
corresponding to it from the database and the predicate
succeeds.

retract/1 is re-executable. On backtracking, continue at
8.9.3.1 g.

8.9.3.2 Template and modes

retract(+clause)

8.9.3.3 Errors

a) Head is a variable
— instantiation error.

b) Head is not a predication
— type error(callable, Head).

c) The predicate indicator Pred of Head is not that of a
dynamic procedure
— permission error(modify,

static procedure, Pred).

8.9.3.4 Examples

The examples defined in this clause assume the database has
been created from the following Prolog text:

:- dynamic(legs/2).
legs(A, 4) :- animal(A).
legs(octopus, 8).
legs(A, 6) :- insect(A).
legs(spider, 8).
legs(B, 2) :- bird(B).

:- dynamic(insect/1).
insect(ant).
insect(bee).

:- dynamic(foo/1).

foo(X) :- call(X), call(X).
foo(X) :- call(X) -> call(X).

retract(legs(octopus, 8)).
Succeeds, retracting the clause

’legs(octopus, 8)’.

retract(legs(spider, 6)).
Fails.

retract((legs(X, 2) :- T)).
Succeeds, unifying T with bird(X),

and retracting the clause
’legs(B, 2) :- bird(B)’.

retract((legs(X, Y) :- Z)).
Succeeds, unifying Y with 4,

and Z with animal(X),
noting the list of clauses to be retracted

= [(legs(A, 4) :- animal(A)),
(legs(A, 6) :- insect(A)),
(legs(spider, 8) :- true)],

and retracting the clause
’legs(A, 4) :- animal(A)’.

On re-execution, succeeds,
unifying Y with 6, and Z with insect(X),
and retracting the clause

’legs(A, 6) :- insect(A)’.
On re-execution, succeeds, unifying Y with 8,

and X with spider, and Z with true,
and retracting the clause

’legs(A, 8) :- animal(A)’.
On re-execution, fails.

retract(insect(I)), write(I),
retract(insect(bee)), fail.

’retract(insect(I))’ succeeds,
unifying I with ’ant’,
noting the list of clauses to be retracted

= [insect(ant), insect(bee)],
and retracting the clause ’insect(ant)’.

’write(ant)’ succeeds, outputting ’ant’.
’retract(insect(bee))’ succeeds,

noting the list of clauses to be retracted
= [insect(bee)],

and retracting the clause ’insect(bee)’.
’fail’ fails.
On re-execution, ’retract(insect(bee))’ fails.
On re-execution, ’write(ant)’ fails.
On re-execution, ’retract(insect(I))’ succeeds,

unifying I with ’bee’,
noting the list of clauses to be retracted

= [insect(bee)],
[the clause ’insect(bee)’ has already

been retracted.]
’write(bee)’ succeeds, outputting ’bee’.
’retract(insect(bee))’ fails.
On re-execution, ’write(bee)’ fails.
On re-execution, ’retract(insect(I))’ fails.
Fails.

retract((foo(A) :- A, call(A))).
Succeeds, retracting the clause

’foo(X) :- call(X), call(X)’.

retract((foo(A) :- A -> B)).
Succeeds, unifying A with B,
and retracting the clause

’foo(X) :- call(X) -> call(X)’.

retract((X :- in_eec(Y))).
instantiation_error.

retract((4 :- X)).
type_error(callable, 4).

64

All solutions

retract((atom(X) :- X == ’[]’)).
permission_error(modify_clause,

static_procedure, atom/1).

After these examples, the database is empty.

————————————————————————

8.9.4 abolish/1

8.9.4.1 Description

abolish(Pred) is true.

Procedurally, abolish(Pred) removes from the database all
clauses for the dynamic procedure specified by the predicate
indicator Pred leaving the database in the same state as if the
procedure had never existed.

8.9.4.2 Template and modes

abolish(@predicate indicator)

8.9.4.3 Errors

a) Pred is a variable
— instantiation error.

b) Pred is a term Name/Arity and either Name or Arity
is a variable
— instantiation error.

c) Pred is a term Name/Arity and Arity is neither a
variable nor an integer
— type error(integer, Arity).

d) Pred is a term Name/Arity and Name is neither a
variable nor an atom
— type error(atom, Name).

e) The procedure specified by Pred is not that of a dynamic
procedure
— permission error(modify,

static procedure, Pred).

8.9.4.4 Examples

abolish(foo/2).
Succeeds, also undefines foo/2 if there exists
a dynamic procedure with predicate foo/2.

abolish(foo/_).
instantiation_error.

abolish(abolish/1).
permission_error(modify_clause,

static_procedure, abolish/1).

————————————————————————

8.10 All solutions

These predicates create a list of all the solutions of a goal.

8.10.1 findall/3

8.10.1.1 Description

findall(Term, Goal, Bag) is true iff Bag unifies with the
list of values to which a variable X not occurring in Term or
Goal would be instantiated by successive resatisfaction of

call(Goal), X=Term
after systematic replacement of all variables in X by new
variables.

Procedurally, findall(Term, Goal, Bag) is executed as
follows:

a) Creates an empty list L,

b) Executes call(G),

c) If it fails, proceeds to 8.10.1.1 g,

d) Else if it succeeds, appends a renamed copy (refrenamed-
copyofaterm) of Term to L,

e) Re-executes call(G),

f) Proceeds to 8.10.1.1 c,

g) Unifies L with Bag,

h) If the unification succeeds, the predicate succeeds,

i) Else the predicate fails.

8.10.1.2 Template and modes

findall(@term, @callable term, ?list)

8.10.1.3 Errors

a) Goal is a variable
— instantiation error.

b) Goal is not a callable term
— type error(callable, Goal).

8.10.1.4 Examples

findall(X, (X=1; X=2), S).
Succeeds, unifying S with [1, 2].

findall(X+Y, (X=1), S).
Succeeds, unifying S with [1+_].

findall(X, fail, L).
Succeeds, unifying S with [].

findall(X, (X=1; X=1), S).
Succeeds, unifying S with [1, 1].

findall(X, (X=2; X=1), [1, 2]).
Fails.

findall(X, Goal, S).
instantiation_error.

findall(X, 4, S).
type_error(callable, 4).

————————————————————————

65

All solutions

8.10.2 bagof/3

bagof/3 assembles as a list the solutions of a goal for each
different instantiation of the free variables in that goal. The
elements of each list are in order of solution, but the order in
which each list is found is undefined.

8.10.2.1 Description

bagof(Template, Goal, Instances) is true iff:

— G is the iterated-goal term (7.1.6.3) of Goal, and

— FV is a witness (7.1.1.2) of the free variables set (7.1.1.4)
of Goal with respect to Template, and

— Instances is a non-empty list of Template such that
G is true, and

— Each element of Instances corresponds to a single
binding of FV, and

— The elements of Instances are in order of solution.

Procedurally, bagof(Template, Goal, Instances) is exe-
cuted as follows:

a) Let Witness be a witness (7.1.1.2) of the free variables
set (7.1.1.4) of Goal with respect to Template,

b) Let G be the iterated-goal term (7.1.6.3) of Goal,

c) Executes the goal findall(Witness+Template, G, S),

d) If S is the empty list, then fails,

e) Else proceeds to step 8.10.2.1 f.

f) Chooses any element, W+T, of S.

g) Let WT list be the largest proper sublist (7.1.6.4) of
S such that, for each element WW+TT of WT list, WW is a
variant (7.1.6.1) of W,

h) Let T list be the list such that, for each element WW+TT
of WT list, there is a corresponding element TT of T list,

i) Let S next be the largest proper sublist of S such that
WW+TT is an element of S next iff WW+TT is not an element
WT list,

j) Replaces S by S next,

k) If T list unifies with Instances, unifies Witness with
each WW defined in 8.10.2.1 g, and succeeds,

l) Else proceeds to step 8.10.2.1 d.

bagof/3 is re-executable. On backtracking, continue at
8.10.2.1 d.

NOTES

1 Step 8.10.2.1 f does not define which element of those eligible will
be chosen. The order of solutions for bagof/3 is thus undefined.

2 If the free variables set of Goal with respect to Template is
empty, and Iterated Goal succeeds, then the predicate can succeed

only once.

3 This definition implies that the variables of Template and the
variables in the existential variables set (7.1.1.3) of Goal remain
uninstantiated after each success of bagof(Template, Goal,
Instances).

8.10.2.2 Template and modes

bagof(@term, +callable term, ?list)

8.10.2.3 Errors

a) G is a variable
— instantiation error.

b) G is not a callable term
— type error(callable, G).

8.10.2.4 Examples

bagof(X, (X=1 ; X=2), S).
Free variables set: {}.
Succeeds, unifying S with [1,2].

bagof(X, (X=1 ; X=2), X).
Free variables set: {}.
Succeeds, unifying X with [1,2].

bagof(X, fail, S).
Free variables set: {}.
Fails.

bagof(1, (Y=1 ; Y=2), L).
Free variables set: {Y}.
Succeeds, unifying L with [1],

and Y with 1.
On re-execution, succeeds, unifying L with [1],

and Y with 2.
[The order of solutions is undefined]

bagof(f(X, Y), (X=a ; Y=b), L).
Free variables set: {}.
Succeeds, unifying L with [f(a, _), f(_, b)].

bagof(X, Yˆ((X=1, Y=1) ; (X=2, Y=2)), S).
Free variables set: {}.
Succeeds, unifying S with [1, 2].

bagof(X, Yˆ((X=1 ; Y=1) ; (X=2, Y=2)), S).
Free variables set: {}.
Succeeds, unifying S with [1, _, 2].

bagof(X, (Yˆ(X=1 ; Y=2) ; X=3), S).
Free variables set: {Y}.
Warning: the procedure ˆ/2 is undefined.
Succeeds, unifying S with [3], and Y with _.
[Assuming the value associated with the flag
’undefined_predicate’ is ’warning’.]

bagof(X, (X=Y ; X=Z ; Y=1), S).
Free variables set: {Y, Z}.
Succeeds, unifying S with [Y, Z].
On re-execution, succeeds, unifying S with [_],

and Y with 1.

bagof(X, (X=Y ; X=Z), S).
Free variables set: {Y, Z}.
Succeeds, unifying S with [Y, Z].

bagof(X, a(X, Y), L).
Clauses of a/2:

a(1, f(_)).

66

All solutions

a(2, f(_)).
Free variables set: {Y}.
Succeeds, unifying L with [1, 2],

and Y with f(_).

bagof(X, b(X, Y), L).
Clauses of b/2:

b(1, 1).
b(1, 1).
b(1, 2).
b(2, 1).
b(2, 2).
b(2, 2).

Free variables set: {Y}.
Succeeds, unifying L with [1,1,2],

and Y with 1.
On re-execution, succeeds,

unifying L with [1,2,2], and Y with 2.
[The order of solutions is undefined]

bagof(X, YˆZ, L).
instantiation_error.

bagof(X, 1, L).
type_error(callable, 1).

The following fully worked examples explain bagof/3 in greater
detail.

** Example: bagof(f(X,Y), (X=a;Y=b), L).

Template = f(X,Y)
Goal = (X=a;Y=b)
Instances = L

Iterated-goal term = (X=a;Y=b)
Free variables set of

Goal with respect to Template: {}
step c -- findall(w+f(X,Y), (X=a;Y=b), S).

S = [w+f(a,_), w+f(_,b)]
step f -- W+T = w+f(_,b)
step g -- WT_list = [w+f(a,_), w+f(_,b)]
step h -- T_list = [f(a,_), f(_,b)]
step i -- S_next = []
Succeeds, unifying L with [f(a,_),f(_,b)].

On re-execution,
step d --- Fails.

** Example: bagof(X,Yˆ((X=1;Y=1);(X=2,Y=2)),B).

Template = X
Goal = Yˆ((X=1;Y=1);(X=2,Y=2))
Instances = B

Iterated-goal term = ((X=1;Y=1);(X=2,Y=2))
Free variables set of

Goal with respect to Template: {}
step c -- findall(w+X, ((X=1;Y=1);(X=2,Y=2)),

S).
S = [w+1, w+_, w+2]

step f -- W+T = w+_
step g -- WT_list = [w+1, w+_, w+2]
step h -- T_list = [1, _, 2]
step i -- S_next = []
Succeeds, unifying B with [1, _, 2]

On re-execution,
step d --- Fails.

** Example: bagof(X,(Yˆ(X=1;Y=2);X=3),C).

Template = X

Goal = (Yˆ(X=1;Y=2);X=3)
Instances = C

Iterated-goal term = (Yˆ(X=1;Y=2);X=3)
Free variables set of

Goal with respect to Template: {Y}
step c -- findall(w(Y)+X, (Yˆ(X=1;Y=2);X=3),

S).
S = [w(_)+3]

step f -- W+T = w(_)+3
step g -- WT_list = [w(_)+3]
step h -- T_list = [3]
step i -- S_next = []
Succeeds, unifying C with [3], and Y with _.

On re-execution,
step d --- Fails.

Note -- This assumes the first alternative
fails because the procedure ˆ/2 has
no defining clauses in the database,
and the value associated with flag
’undefined_predicate’ is ’fail’.

** Example: bagof(X, (X=Y ; X=Z ; Y=1), D).

Template = X
Goal = (X=Y ; X=Z ; Y=1)
Instances = D

Iterated-goal term = (X=Y ; X=Z ; Y=1)
Free variables set of

Goal with respect to Template: {Y, Z}
step c -- findall(w(Y,Z)+X, (X=Y ; X=Z ; Y=1),

S).
S = [w(X1,_)+X1, w(_,X2)+X2, w(1,_)+X3]
step f -- W+T = w(_,X2)+X2
step g -- WT_list = [w(X1,_)+X1, w(_,X2)+X2]
step h -- T_list = [X1, X2]
step i -- S_next = [w(1,_)+X3]
Succeeds, unifying D with [X1, X2],

and Y with X1, and Z with X2.

On re-execution,
step f -- W+T = w(1,_)+X3
step g -- WT_list = [w(1,_)+X3]
step h -- T_list = [X3]
step i -- S_next = []
Succeeds, unifying D with [X3], and Y with 1.

On re-execution,
step d --- Fails.

————————————————————————

8.10.3 setof/3

setof/3 assembles as a list the solutions of a goal for each
different instantiation of the free variables in that goal. The
elements of each list are distinct and ordered, but the order in
which each list is found is undefined.

8.10.3.1 Description

setof(Template, Goal, Instances) is true iff

— G is the iterated-goal term (7.1.6.3) of Goal, and

— FV is a witness (7.1.1.2) of the free variables set (7.1.1.4)
of Goal with respect to Template, and

67

All solutions

— Instance list is a non-empty list of Template such
that G is true, and

— Each element of Instance list corresponds to a single
binding of FV, and

— Instances is the sorted list (7.1.6.5) of Instance list.

Procedurally, setof(Template, Goal, Instances) is exe-
cuted as follows:

a) Let Witness be a witness of the free variables set
(7.1.1.4) of Goal with respect to Template,

b) Let G be the iterated-goal term (7.1.6.3) of Goal,

c) Execute the goal findall(Witness+Template, G, S),

d) If S is the empty list, the predicate fails.

e) Else proceed to step 8.10.3.1 f.

f) Choose any element, W+T, of S.

g) Let WT list be the largest proper sublist (7.1.6.4) of
S such that, for each element WW+TT of WT list, WW is a
variant (7.1.6.1) of W,

h) Let T list be a list such that, for each element WW+TT
of WT list, there is a corresponding element TT of T list,

i) Let SS be the largest proper sublist of S such that WW+TT
is an element of S next iff WW+TT is not an element WT list,

j) Let S next be the sorted list (7.1.6.5) of S,

k) Replace S by S next,

l) If T list unifies with Instances, the predicate succeeds
and unifies Witness with each WW defined in 8.10.3.1 g,

m) Else proceed to step 8.10.3.1 d.

setof/3 is re-executable. On backtracking, continue at
8.10.3.1 d.

8.10.3.2 Template and modes

setof(@term, +callable term, ?list)

8.10.3.3 Errors

a) G is a variable
— instantiation error.

b) G is not a callable term
— type error(callable, G).

8.10.3.4 Examples

setof(X, (X=1; X=2), S).
Free variables set: {}.
Succeeds, unifying S with [1,2].

setof(X, (X=1; X=2), X).
Free variables set: {}.

Succeeds, unifying X with [1,2].

setof(X, (X=2; X=1), S).
Free variables set: {}.
Succeeds, unifying S with [1,2].

setof(X, (X=2; X=2), S).
Free variables set: {}.
Succeeds, unifying S with [2].

setof(X, (X=Y; X=Z), S).
Free variables set: {Y, Z}.
Succeeds, unifying S with [Y, Z] or [Z, Y].
[The solution is implementation dependent.]

setof(X, fail, S).
Free variables set: {}.
Fails.

setof(1, (Y=2 ; Y=1), L).
Free variables set: {Y}.
Succeeds, unifying L with [1], and

Y with 1.
On re-execution, succeeds,

unifying L with [1], and Y with 2.
[The order of solutions is undefined]

setof(f(X,Y), (X=a ; Y=b), L).
Free variables set: {}.
Succeeds, unifying L with [f(_,b),f(a,_)].

setof(X, Yˆ((X=1, Y=1) ; (X=2, Y=2)), S).
Free variables set: {}.
Succeeds, unifying S with [1,2].

setof(X, Yˆ((X=1 ; Y=1) ; (X=2, Y=2)), S).
Free variables set: {}.
Succeeds, unifying S with [_,1,2].

setof(X, (Yˆ(X=1 ; Y=2) ; X=3), S).
Free variables set: {Y}.
Warning: the procedure ˆ/2 is undefined.
Succeeds, unifying S with [3], and Y with _.
[Assuming the value associated with the flag
’undefined_predicate’ is ’warning’.]

setof(X, (X=Y ; X=Z ; Y=1), S).
Free variables set: {Y, Z}.
Succeeds, unifying S with [Y,Z] or [Z,Y].
On re-execution, succeeds, unifying S with [_],

and Y with 1.

setof(X, a(X, Y), L).
Clauses of a/2:

a(1, f(_)).
a(2, f(_)).

Free variables set: {Y}.
Succeeds, unifying L with [1, 2],

and Y with f(_).

The following examples assume that member/2
is defined with the following clauses:

member(X, [X | _]).
member(X, [_ | L]) :-

member(X, L).

setof(X, member(X,[f(U,b),f(V,c)]), L).
Free variables set: {U, V}.
Succeeds, unifying L with [f(U,b),f(V,c)] or

with [f(V,c),f(U,b)].

setof(X, member(X,[f(U,b),f(V,c)]),
[f(a,c),f(a,b)]).

Free variables set: {U, V}.
Implementation dependent.

68

Stream selection and control

setof(X, member(X,[f(b,U),f(c,V)]),
[f(b,a),f(c,a)]).

Free variables set: {U, V}.
Succeeds, unifying U with a, and V with a.

setof(X, member(X,[V,U,f(U),f(V)]), L).
Free variables set: {U, V}.
Succeeds, unifying L with [U,V,f(U),f(V)] or

with [V,U,f(V),f(U)].

setof(X, member(X,[V,U,f(U),f(V)]),
[a,b,f(a),f(b)]).

Free variables set: {U, V}.
Implementation dependent.
Succeeds, unifying U with a, and V with B;
or, unifying U with b, and V with a.

setof(X, member(X,[V,U,f(U),f(V)]),
[a,b,f(b),f(a)]).

Free variables set: {U, V}.
Fails.

setof(X,
(exists(U,V)ˆmember(X,[V,U,f(U),f(V)])),
[a,b,f(b),f(a)]).

Free variables set: {}.
Succeeds.

The following examples assume that b/2 is defined
with the following clauses:

b(1, 1).
b(1, 1).
b(1, 2).
b(2, 1).
b(2, 2).
b(2, 2).

setof(X, b(X, Y), L).
Free variables set: {Y}.
Succeeds, unifying L with [1, 2], and Y with 1.
On re-execution, succeeds,

unifying L with [1, 2], and Y with 2.
[The order of solutions is undefined]

setof(X-Xs,Yˆsetof(Y,b(X,Y),Xs),L).
Free variables set: {}.
Succeeds, unifying L with [1-[1,2],2-[1,2]].
[Each list is independently ordered]

setof(X-Xs,setof(Y,b(X,Y),Xs),L).
Free variables set: {Y}.
Succeeds, unifying L with [1-[1,2],2-[1,2]],

and Y with _.
[Each list is independently ordered]

setof(X-Xs,bagof(Y,d(X,Y),Xs),L).
Clauses of d/3:

d(1,1).
d(1,2).
d(1,1).
d(2,2).
d(2,1).
d(2,2).

Free variables set: {Y}.
Succeeds,

unifying L with [1-[1,2,1],2-[2,1,2]],
and Y with _.

————————————————————————

8.11 Stream selection and control

These predicates link an external source/sink with a Prolog
stream, its stream identifier and stream alias. They enable the
source/sink to be opened and closed, and its properties found
during execution.

NOTE — The use of these predicates may cause a Resource Error
(7.12.2 h) because, for example, the program has opened too many

streams, or a file or disk is full. The use of these predicates may
also cause a System Error (7.12.2 j) because the operating system is

reporting a problem.

The precise reasons for such errors, the side effects which have

occurred, and the way they can be circumvented cannot be specified
in this draft International Standard.

8.11.1 current input/1

8.11.1.1 Description

current input(Stream) is true iff the stream identifier Stream
identifies the current input stream (7.10.2.4).

Procedurally, current input(Stream) unifies Stream with the
stream identifier of the current input stream.

8.11.1.2 Template and modes

current input(?stream)

8.11.1.3 Errors

None.

————————————————————————

8.11.2 current output/1

8.11.2.1 Description

current output(Stream) is true iff the stream identifier
Stream identifies the current output stream (7.10.2.4).

Procedurally, current output(Stream) unifies Stream with
the stream identifier of the current output stream.

8.11.2.2 Template and modes

current output(?stream)

8.11.2.3 Errors

None.

————————————————————————

8.11.3 set input/1

8.11.3.1 Description

set input(S or a) is true.

69

Stream selection and control

Procedurally, set input(S or a) is executed as follows:

a) If S or a is not a stream identifier or alias for an input
stream which is currently open, then there shall be an error,

b) Else set the stream associated with stream identifier or
alias S or a to be the current input stream, and succeeds.

8.11.3.2 Template and modes

set input(@stream or alias)

8.11.3.3 Errors

a) S or a is a variable
— instantiation error.

b) S or a is neither a variable nor a stream identifier or
alias
— domain error(stream or alias, S or a).

c) S or a is not associated with an open stream
— existence error(stream, S or a).

d) S or a is an output stream
— permission error(input, stream, S or a).

————————————————————————

8.11.4 set output/1

8.11.4.1 Description

set output(S or a) is true.

Procedurally, set output(S or a) is executed as follows:

a) If S or a is not a stream identifier or alias for an output
stream which is currently open, then there shall be an error,

b) Else set the stream associated with stream identifier or
alias S or a to be the current output stream, and succeeds.

8.11.4.2 Template and modes

set output(@stream or alias)

8.11.4.3 Errors

a) S or a is a variable
— instantiation error.

b) S or a is neither a variable nor a stream identifier or
alias
— domain error(stream or alias, S or a).

c) S or a is not associated with an open stream
— existence error(stream, S or a).

d) S or a is an input stream
— permission error(output, stream, S or a).

————————————————————————

8.11.5 open/3

8.11.5.1 Description

open(Source sink, Mode, Stream) is true iff
open(Source sink, Mode, Stream, []).

8.11.5.2 Template and modes

open(@source sink, @io mode, -stream)

8.11.5.3 Errors

a) Source sink is a variable
— instantiation error.

b) Mode is a variable
— instantiation error.

c) Source sink is neither a variable nor a source/sink
— domain error(source sink, Source sink).

d) Mode is neither a variable nor an atom
— type error(atom, Mode).

e) Stream is not a variable
— type error(variable, Stream).

f) Mode is an atom but not an I/O mode
— domain error(io mode, Mode).

g) The source/sink specified by Source sink cannot be
opened
— permission error(open, source/sink,

Source sink).

8.11.5.4 Examples

open(’/user/dave/data’, read, DD).
Succeeds.
[It opens the text file ’/user/dave/data’
for input, and unifies DD with a
stream identifier for the stream.]

————————————————————————

8.11.6 open/4

8.11.6.1 Description

open(Source sink, Mode, Stream, Options) is true.

Procedurally, open(Source sink, Mode, Stream, Options)
is executed as follows:

a) Opens the source/sink Source sink for input or output
as indicated by I/O mode Mode and the list of stream-options
Options.

b) Unifies Stream with the stream identifier which is to be
associated with this stream,

c) The predicate succeeds.

70

Stream selection and control

8.11.6.2 Template and modes

open(@source sink, @io mode, -stream,
@io options)

8.11.6.3 Errors

a) Source sink is a variable
— instantiation error.

b) Mode is a variable
— instantiation error.

c) Options is a variable
— instantiation error.

d) Options is a list with an element E which is a variable
— instantiation error.

e) Source sink is neither a variable nor a source/sink
— domain error(source sink, Source sink).

f) Mode is neither a variable nor an atom
— type error(atom, Mode).

g) Options is neither a variable nor a list
— type error(list, Options).

h) An element E of the Options list is neither a variable
nor a stream-option
— domain error(stream option, E).

i) Stream is not a variable
— type error(variable, Stream).

j) Mode is an atom but not an I/O mode
— domain error(io mode, Mode).

k) The source/sink specified by Source sink cannot be
opened
— permission error(open, source sink,

Source sink).

l) An element E of the Options list is alias(A) and A is
already associated with an open stream
— permission error(open, source sink,

alias(A)).

m) An element E of the Options list is reposition(true)
and it is not possible to reposition this stream
— permission error(open, source sink,

reposition(true)).

NOTE — A permission error when Mode is write or append
means that Source sink does not specify a sink that can be created,
for example, a specified disk or directory does not exist. If Mode is

read then it is also possible that the file specification is valid but
the file does not exist.

8.11.6.4 Examples

open(’/user/dave/data’, read, DD, []).
Succeeds.
[It opens the text file ’/user/dave/data’
for input, and unifies DD with a
stream identifier for the stream.]

————————————————————————

8.11.7 close/1

8.11.7.1 Description

close(S or a) is true iff
close(S or a, []).

8.11.7.2 Template and modes

close(@stream or alias)

8.11.7.3 Errors

a) S or a is a variable
— instantiation error.

b) S or a is neither a variable nor a stream identifier or
alias
— domain error(stream or alias, S or a).

————————————————————————

8.11.8 close/2

This built-in predicate closes the stream associated with stream
identifier or alias S or a if it is open. The behaviour of this
predicate may be modified by specifying a list of close-options
(7.10.2.12) in the Options parameter.

8.11.8.1 Description

close(S or a, Options) is true.

Procedurally, close(S or a, Options) is executed as follows:

a) If S or a is an atom which is not the alias of a currently
open stream, then the predicate succeeds,

b) Else if S or a is a valid stream representation but does
not represent a currently open stream, then the predicate
succeeds,

c) Else, any output which is currently buffered by the
processor for the stream associated with S or a is sent to
that stream,

d) If the stream identifier or alias S or a is the standard
input stream or the standard output stream, then the predicate
succeeds,

e) Else if the stream associated with S or a is not the
current input stream then proceeds to 8.11.8.1 g,

f) The current input stream becomes the standard input
stream user input,

g) If the stream associated with S or a is not the current
output stream then proceeds to 8.11.8.1 i,

h) The current output stream becomes the standard output
stream user output,

i) Closes the stream associated with S or a and deletes any
alias associated with that stream,

71

Stream selection and control

j) The predicate succeeds.

The above implies that when a stream Stream has already been
closed, a subsequent call close(S or a) simply succeeds.

8.11.8.2 Template and modes

close(@stream or alias, @close options)

8.11.8.3 Errors

a) S or a is a variable
— instantiation error.

b) Options is a variable
— instantiation error.

c) Options is a list with an element E which is a variable
— instantiation error.

d) S or a is neither a variable nor a stream identifier or
alias
— domain error(stream or alias, S or a).

e) Options is neither a variable nor a list
— type error(list, Options).

f) An element E of the Options list is neither a variable
nor a close-option
— domain error(close option, E).

————————————————————————

8.11.9 flush output/0

NOTE — Flushing an output stream is explained in clause 7.10.2.10.

8.11.9.1 Description

flush output is true.

Procedurally, flush output is executed as follows:

a) Any output which is currently buffered by the processor
for the current output stream is sent to that stream,

b) The predicate succeeds.

8.11.9.2 Template and modes

flush output

8.11.9.3 Errors

None.

————————————————————————

8.11.10 flush output/1

NOTE — Flushing an output stream is explained in clause 7.10.2.10.

8.11.10.1 Description

flush output(S or a) is true.

Procedurally, flush output(S or a) is executed as follows:

a) Any output which is currently buffered by the processor
for the stream associated with stream identifier or alias S or a
is sent to that stream,

b) The predicate succeeds.

8.11.10.2 Template and modes

flush output(@stream or alias)

8.11.10.3 Errors

a) S or a is a variable
— instantiation error.

b) S or a is neither a variable nor a stream identifier or
alias
— domain error(stream or alias, S or a).

c) S or a is not associated with an open stream
— existence error(stream, S or a).

d) S or a is an input stream
— permission error(output, stream, S or a).

————————————————————————

8.11.11 stream property/2

8.11.11.1 Description

stream property(Stream, Property) is true iff the stream
identified by the stream identifier Stream has stream property
(7.10.2.13) Property.

Procedurally, stream property(Stream, Property) is exe-
cuted as follows:

a) Computes SP , the set of all pairs (S,P) such that S is
a currently open stream which has property P,

b) If SP is empty, the predicate fails,

c) Else, chooses one pair (S,P) in SP and removes it
from the set,

d) Unifies S with Stream and P with Property,

e) If the unification succeeds, the predicate succeeds,

f) Else, proceeds to 8.11.11.1 b.

stream property(Stream, Property) is re-executable. On
backtracking, continue at 8.11.11.1 b.

NOTE — When used in non-determinate ways, stream property shall
exhibit logical semantics for state changes. For example:

:- stream_property(S, P),
write(S:P),

72

Character input/output

nl,
close(S),
fail.

shall show all the properties that all open streams had before this goal
was run. Note that this example may call close(S) several times
for each stream S, but this does not cause any problem since close

simply succeeds if called on a stream which is already closed.

8.11.11.2 Template and modes

stream property(?stream, ?stream property)

8.11.11.3 Errors

None.

8.11.11.4 Examples

stream_property(S, file_name(F))
If S is instantiated, succeeds,

unifying F with the name of the file
to which it is connected,

Else succeeds, unifying S with a
stream identifier and F with the name
of the file to which it is connected;
on re-execution, succeeds in turn with
each stream which is connected to a file.

stream_property(S, output)
If S is instantiated, succeeds iff output

is permitted on this stream,
Else succeeds, unifying S with a

stream identifier which is open for
output; on re-execution, succeeds in turn
with each stream which is open for output.

————————————————————————

8.11.12 at end of stream/0

8.11.12.1 Description

at end of stream is true iff the current input stream has a
stream position end-of-stream or past-end-of-stream (7.10.2.9,
7.10.2.13).

8.11.12.2 Template and modes

at end of stream

8.11.12.3 Errors

None.

————————————————————————

8.11.13 at end of stream/1

8.11.13.1 Description

at end of stream(S or a) is true iff the stream associated
with stream identifier or alias S or a has a stream position
end-of-stream or past-end-of-stream (7.10.2.9, 7.10.2.13).

8.11.13.2 Template and modes

at end of stream(@stream or alias)

8.11.13.3 Errors

None.

————————————————————————

8.11.14 set stream position/2

8.11.14.1 Description

set stream position(S or a, Position) is true.

Procedurally, set stream position(S or a,
Position) is executed as follows:

a) Sets the stream position of the stream associated with
stream identifier or alias S or a to Position,

b) Succeeds.

NOTE — Normally, Position will previously have been returned as
a position/1 stream property of the stream.

8.11.14.2 Template and modes

set stream position(@stream or alias,
@stream position)

8.11.14.3 Errors

a) S or a is a variable
— instantiation error.

b) Position is a variable
— instantiation error.

c) S or a is neither a variable nor a stream identifier or
alias
— domain error(stream or alias, S or a).

d) Position is neither a variable nor a stream position
— domain error(stream position, Position).

e) S or a is not associated with an open stream
— existence error(stream, S or a).

f) S or a has stream property reposition(false)
— permission error(reposition, stream,

S or a).

————————————————————————

8.12 Character input/output

These built-in predicates enable a single character or byte to be
input and output from a stream.

73

Character input/output

8.12.1 get char/1

8.12.1.1 Description

get char(Char) is true iff
(current input(S), get char(S, Char)).

8.12.1.2 Template and modes

get char(?character)

8.12.1.3 Errors

a) The current input stream has stream properties
end of stream(past) and eof action(error) (7.10.2.9,
7.10.2.11, 7.10.2.13)
— existence error(past end of stream,

current input stream).

8.12.1.4 Examples

get_char(Char).
current input stream

qwerty ...
Char is unified with the atom ’q’ and
the current input stream becomes

werty ...

————————————————————————

8.12.2 get char/2

8.12.2.1 Description

get char(S or a, Char) is true iff

— The stream associated with stream identifier or alias
S or a is a text stream, and Char unifies with the next
character to be read from S or a, or

— The stream associated with stream identifier or alias
S or a is a binary stream, and Char unifies with the next
byte to be read from S or a.

Procedurally, get char(S or a, Char) is executed as follows:

a) If the stream associated with S or a has stream properties
end of stream(past) and eof action(A) then performs
the action appropriate to the value of A specified in clause
7.10.2.11.

b) If the stream position is end-of-stream, proceeds to
8.12.2.1 h,

c) If the stream associated with S or a is a text stream,
reads the next character C from the stream associated with
S or a,

d) If the stream associated with S or a is a binary stream,
reads the next byte C from the stream associated with S or a,

e) Advances the stream position of the stream associated
with S or a by one character,

f) If C unifies with Char, the predicate succeeds,

g) Else the predicate fails.

h) Sets the stream position so that it is past-end-of-stream,

i) If the atom end of file unifies with C, the predicate
succeeds,

j) Else the predicate fails.

8.12.2.2 Template and modes

get char(@stream or alias, ?character)

8.12.2.3 Errors

a) S or a is a variable
— instantiation error.

b) S or a is neither a variable nor a stream identifier or
alias
— domain error(stream or alias, S or a).

c) S or a is not associated with an open stream
— existence error(stream, S or a).

d) S or a has stream properties
end of stream(past) and eof action(error)

(7.10.2.9, 7.10.2.11, 7.10.2.13)
— existence error(past end of stream, S or a).

e) S or a is an output stream
— permission error(input, stream, S or a).

8.12.2.4 Examples

get_char(Stream, Char).
The contents of Stream are

qwerty ...
Char is unified with ’q’ and
Stream is left as

werty ...

get_char(Stream, Char).
The contents of Stream are

’qwerty’ ...
Char is unified with ’\’’ (the
atom containing just a single
quote) and Stream is left as

qwerty’ ...

get_char(my_file, ’\13\’).
The contents of my_file are

\13\10\newline ...
Succeeds and my_file is left as

\10\newline ...

get_char(Stream, p).
The contents of Stream are

qwerty ...
Fails and
Stream is left as

werty ...

get_char(user_output, X).
The contents of user_output are

qwerty ...
permission_error(input, stream, user_output).
user_output is left as

qwerty ...

74

Character input/output

get_char(S, Char).
Stream position of S is end-of-stream.
Char is unified with end_of_file and
Stream position of S is past-end-of-stream.

————————————————————————

8.12.3 put char/1

8.12.3.1 Description

put char(Char) is true iff
(current output(S), put char(S, Char)).

8.12.3.2 Template and modes

put char(@character)

8.12.3.3 Errors

a) Char is a variable
— instantiation error.

b) Char is neither a variable nor a character
— type error(character, Char).

c) Char is neither a variable nor a character (7.1.4.1)
— representation error(character).

8.12.3.4 Examples

put_char(t).
current output stream

... qwer
Succeeds and leaves that stream

... qwert

————————————————————————

8.12.4 put char/2

8.12.4.1 Description

Procedurally, put char(S or a, Char) is executed as follows:

a) Outputs the character Char to the stream associated with
stream identifier or alias S or a.

b) Changes the stream position on the stream associated
with S or a to take account of the character which has been
output,

c) The predicate succeeds.

8.12.4.2 Template and modes

put char(@stream or alias, @character)

8.12.4.3 Errors

a) S or a is a variable
— instantiation error.

b) Char is a variable
— instantiation error.

c) S or a is neither a variable nor a stream identifier or
alias
— domain error(stream or alias, S or a).

d) Char is neither a variable nor a character
— type error(character, Char).

e) S or a is not associated with an open stream
— existence error(stream, S or a).

f) S or a is an input stream
— permission error(output, stream, S or a).

g) Char is neither a variable nor a character (7.1.4.1)
— representation error(character).

8.12.4.4 Examples

put_char(Stream,t).
If the stream associated with Stream contains

... qwer
Succeeds and leaves that stream

... qwert

put_char(my_file, C).
instantiation_error.

put_char(Str, ’ty’).
type_error(character, ty).

put_char(Str, ’A’).
If the stream associated with Stream contains

... qwer
Succeeds and leaves that stream

... qwerA

————————————————————————

8.12.5 nl/0

8.12.5.1 Description

nl is true iff
(current output(S), nl(S)).

8.12.5.2 Template and modes

nl

8.12.5.3 Errors

None.

8.12.5.4 Examples

nl, put_char(a).
Current output stream

... qwer
Succeeds and leaves that stream

... qwer
a

————————————————————————

75

Character code input/output

8.12.6 nl/1

8.12.6.1 Description

nl(S or a) is true.

Procedurally, nl(S or a) is executed as follows:

a) Outputs a new line character to the stream associated
with S or a,

b) Succeeds.

NOTES

1 This built-in predicate terminates the current line or record.

2 nl(S or a) is equivalent to put char(S or a, ’\n’).

8.12.6.2 Template and modes

nl(@stream or alias)

8.12.6.3 Errors

a) S or a is a variable
— instantiation error.

b) S or a is neither a variable nor a stream identifier or
alias
— domain error(stream or alias, S or a).

c) S or a is not associated with an open stream
— existence error(stream, S or a).

d) S or a is an input stream
— permission error(output, stream, S or a).

8.12.6.4 Examples

nl(st), put_char(st, a).
If the stream associated with st contains

... qwer
Succeeds and leaves that stream

... qwer
a

nl(Str).
instantiation_error.

nl([my_file]).
domain_error(stream_or_alias, [my_file]).

————————————————————————

8.13 Character code input/output

These built-in predicates enable a single byte to be input and
output from a stream.

8.13.1 get code/1

8.13.1.1 Description

get code(Code) is true iff
(current input(S), get code(S, Code)).

8.13.1.2 Template and modes

get code(?character code)

8.13.1.3 Errors

a) The current input stream has stream properties
end of stream(past) and eof action(error) (7.10.2.9,
7.10.2.11, 7.10.2.13)
— existence error(past end of stream,

current input stream)

8.13.1.4 Examples

get_code(Code).
current input stream

qwerty ...
Code is unified with 0’q and
the current input stream becomes

werty ...

————————————————————————

8.13.2 get code/2

8.13.2.1 Description

If the stream associated with stream identifier or alias S or a
is a text stream then get code(S or a, Int) is true iff Int
unifies with the character code (7.1.2.2) corresponding to the
next character to be read from S or a, else if S or a is a binary
stream get code(S or a, Int) is true iff Int unifies with the
next byte to be read from S or a.

Procedurally, get code(S or a, Int) is executed as follows:

a) If the stream associated with S or a has stream properties
end of stream(past) and eof action(A) then performs
the action appropriate to the value of A specified in clause
7.10.2.11.

b) If there is no more data in the stream, proceeds to
8.13.2.1 g,

c) Else reads the next character with character code I, from
the stream associated with S or a,

d) Advances the stream position of the stream associated
with S or a by one character,

e) If I unifies with Int, the predicate succeeds,

f) Else the predicate fails.

g) Sets the stream position so that it is past-end-of-stream,

h) If the integer -1 unifies with Int, the predicate succeeds,

i) Else the predicate fails.

8.13.2.2 Template and modes

get code(@stream or alias, ?character code)

76

Character code input/output

8.13.2.3 Errors

a) S or a is a variable
— instantiation error.

b) S or a is neither a variable nor a stream identifier or
alias
— domain error(stream or alias, S or a).

c) S or a is not associated with an open stream
— existence error(stream, S or a).

d) S or a has stream properties
end of stream(past) and eof action(error)

(7.10.2.9, 7.10.2.11, 7.10.2.13)
— existence error(past end of stream, S or a)

e) S or a is an output stream
— permission error(input, stream, S or a).

8.13.2.4 Examples

get_code(Stream, Code).
The contents of Stream are

qwerty ...
Code is unified with 0’q and
Stream is left as

werty ...

get_code(Stream, Code).
The contents of Stream are

’qwerty’ ...
Code is unified with 0’’’ and
Stream is left as

qwerty’ ...

get_code(my_file, 0’\13\).
The contents of my_file are

0’\13\0’\10\\newline ...
Succeeds and my_file is left as

0’\10\newline ...

get_code(Stream, 0’p).
The contents of Stream are

qwerty ...
Fails and
Stream is left as

werty ...

get_code(user_output, X).
The contents of Stream are

qwerty ...
permission_error(input, stream, user_output).
Stream is left as

qwerty ...

get_code(S, Code).
If stream position of the

stream associated with S is end-of-stream
then

Succeeds, unifying Code with 1, and
Sets stream position of S to

past-end-of-stream.

————————————————————————

8.13.3 put code/1

8.13.3.1 Description

put code(Code) is true iff
(current output(S), put code(S, Code)).

8.13.3.2 Template and modes

put code(@character code)

8.13.3.3 Errors

a) Code is a variable
— instantiation error.

b) Code is neither a variable nor an integer
— type error(integer, Code).

c) Code is neither a variable nor a character code (7.1.2.2)
— representation error(character code).

8.13.3.4 Examples

put_code(0’t).
current output stream

... qwer
Succeeds and leaves that stream

... qwert

————————————————————————

8.13.4 put code/2

8.13.4.1 Description

Procedurally, put code(S or a, Code) is executed as follows:

a) Outputs the character Code to the stream associated with
stream identifier or alias S or a.

b) Changes the stream position on the stream associated
with S or a to take account of the character which has been
output,

c) The predicate succeeds.

8.13.4.2 Template and modes

put code(@stream or alias, @character code)

8.13.4.3 Errors

a) S or a is a variable
— instantiation error.

b) Code is a variable
— instantiation error.

c) S or a is neither a variable nor a stream identifier or
alias
— domain error(stream or alias, S or a).

77

Term input/output

d) Code is neither a variable nor an integer
— type error(integer, Code).

e) S or a is not associated with an open stream
— existence error(stream, S or a).

f) S or a is an input stream
— permission error(output, stream, S or a).

g) Code is neither a variable nor a character code (7.1.2.2)
— representation error(character code)

8.13.4.4 Examples

put_code(Stream, 0’t).
If the stream associated with Stream contains

... qwer
Succeeds and leaves that stream

... qwert

put_code(my_file, C).
instantiation_error.

put_code(Str, ’ty’).
type_error(integer, ’ab’).

put_code(Str, 65).
If the stream associated with Stream contains

... qwer
Succeeds and leaves that stream

... qwerA

————————————————————————

8.14 Term input/output

These predicates enable a Prolog term to be input from or
output to a stream. The syntax of such terms can also be
altered by changing the operators, and making some characters
equivalent to one another.

8.14.1 read term/2

8.14.1.1 Description

read term(Term, Options) is true iff
(current input(S),
read term(S, Term, Options)).

8.14.1.2 Template and modes

read term(?term, +read options list)

8.14.1.3 Errors

a) One or more characters were read, but they could not be
parsed as a term using the current set of operator definitions
— syntax error.

b) Options is a variable
— instantiation error.

c) Options is a list with an element E which is a variable
— instantiation error.

d) Options is neither a variable nor a list
— type error(list, Options).

e) An element E of the Options list is neither a variable
nor a valid read-option
— domain error(read option, E).

————————————————————————

8.14.2 read term/3

8.14.2.1 Description

read term(S or a, Term, Options) is true iff Term unifies
with T, where T. is a read-term which has been constructed
by inputting and parsing characters from the stream associated
with stream identifier or alias S or a (see 7.10.4).

The read-options (7.10.3) specified in Options will be instanti-
ated to provide additional information about the term which is
read.

NOTE — The effect of this predicate may be modified by calling the
built-in predicate char conversion/2 (8.14.15), and if the value
associated with the flag char conversion (7.11.2.1) is on.

8.14.2.2 Template and modes

read term(@stream or alias, ?term,
+read options list)

8.14.2.3 Errors

a) One or more characters were read, but they could not be
parsed as a term using the current set of operator definitions
— syntax error.

b) S or a is a variable
— instantiation error.

c) Options is a variable
— instantiation error.

d) Options is a list with an element E which is a variable
— instantiation error.

e) S or a is neither a variable nor a stream identifier or
alias
— domain error(stream or alias, S or a).

f) Options is neither a variable nor a list
— type error(list, Options).

g) An element E of the Options list is neither a variable
nor a valid read-option
— domain error(read option, E).

h) An element E of the Options list is alias(A) and A
is already associated with an open stream
— domain error(read option, E).

i) An element E of the Options list is reposition(true)
and it is not possible to reposition this stream
— permission error(reposition, E).

j) S or a is not associated with an open stream
— existence error(stream, S or a).

78

Term input/output

k) S or a is an output stream
— permission error(input, stream, S or a).

————————————————————————

8.14.3 read/1

8.14.3.1 Description

read(Term) is true iff
(current input(S), read term(S, Term, [])).

8.14.3.2 Template and modes

read(?term)

8.14.3.3 Errors

a) One or more characters were read, but they could not be
parsed as a term using the current set of operator definitions
— syntax error.

8.14.3.4 Examples

read(T).
current input stream is

term1. term2. ...
Succeeds, unifying T with term1.
The current input stream is left as

term2. ...

read(term1).
current input stream is

term1. term2. ...
Succeeds.
current input stream is left as

term2. ...

read(T).
current input stream is

3.1. term2. ...
Succeeds, unifying T with 3.1.
The current input stream is left as

term2. ...

read(4.1).
current input stream is

3.1. term2. ...
Fails.
The current input stream is left as

term2 ...

read(T).
current input stream is

foo 123. term2. ...
and foo is not a current prefix operator
syntax_error.
The current input stream is left as

term2. ...

read(T).
current input stream is

3.1
syntax_error.
The current input stream is left with
position past-end-of-stream.

————————————————————————

8.14.4 read/2

8.14.4.1 Description

read(S or a, Term) is true iff
read term(S or a, Term, []).

8.14.4.2 Template and modes

read(@stream or alias, ?term)

8.14.4.3 Errors

a) One or more characters were read, but they could not be
parsed as a term using the current set of operator definitions
— syntax error.

b) S or a is a variable
— instantiation error.

c) S or a is neither a variable nor a stream identifier or
alias
— domain error(stream or alias, S or a).

d) S or a is not associated with an open stream
— existence error(stream, S or a).

e) S or a is an output stream
— permission error(input, stream, S or a).

————————————————————————

8.14.5 write term/2

8.14.5.1 Description

write term(Term, Options) is true iff
(current output(S),
write term(S, Term, Options)).

8.14.5.2 Template and modes

write term(@term, @write options list)

8.14.5.3 Errors

a) Options is a variable
— instantiation error.

b) Options is a list with an element E which is a variable
— instantiation error.

c) Options is neither a variable nor a list
— type error(list, Options).

d) An element E of the Options list is neither a variable
nor a valid write-option
— domain error(write option, E).

————————————————————————

79

Term input/output

8.14.6 write term/3

8.14.6.1 Description

write term(S or a, Term, Options) is true.

Procedurally, write term(S or a, Term, Options) is executed
as follows:

a) Outputs Term to the stream associated with stream
identifier or alias S or a in a form which is defined by the
write-options list (7.10.5) Options,

b) Succeeds.

8.14.6.2 Template and modes

write term(@stream or alias, @term,
@write options list)

8.14.6.3 Errors

a) S or a is a variable
— instantiation error.

b) Options is a variable
— instantiation error.

c) Options is a list with an element E which is a variable
— instantiation error.

d) S or a is neither a variable nor a stream identifier or
alias
— domain error(stream or alias, S or a).

e) Options is neither a variable nor a list
— type error(list, Options).

f) An element E of the Options list is neither a variable
nor a valid write-option
— domain error(write option, E).

g) S or a is not associated with an open stream
— existence error(stream, S or a).

h) S or a is an input stream
— permission error(output, stream, S or a).

8.14.6.4 Examples

write_term(S, [1,2,3], []).
Succeeds, outputting the characters

[1,2,3]
to the stream associated with S.

write_term(S, [1,2,3], [ignore_ops(true)]).
Succeeds, outputting the characters

.(1,.(2,.(3,[])))
to the stream associated with S.

write_term(S, ’1<2’, []).
Succeeds, outputting the characters

1<2
to the stream associated with S.

write_term(S, ’1<2’, [quoted(true)]).
Succeeds, outputting the characters

’1<2’
to the stream associated with S.

write_term(S, ’$VAR’(0), [numbervars(true)]).
Succeeds, outputting the character

A
to the stream associated with S.

write_term(S, ’$VAR’(1), [numbervars(true)]).
Succeeds, outputting the character

B
to the stream associated with S.

write_term(S, ’$VAR’(25), [numbervars(true)]).
Succeeds, outputting the characters

Z
to the stream associated with S.

write_term(S, ’$VAR’(26), [numbervars(true)]).
Succeeds, outputting the character

A1
to the stream associated with S.

write_term(S, ’$VAR’(51), [numbervars(true)]).
Succeeds, outputting the characters

Z1
to the stream associated with S.

write_term(S, ’$VAR’(52), [numbervars(true)]).
Succeeds, outputting the characters

A2
to the stream associated with S.

————————————————————————

8.14.7 write/1

8.14.7.1 Description

write(Term) is true iff
(current output(S), write(S, Term)).

8.14.7.2 Template and modes

write(@term)

8.14.7.3 Errors

None.

————————————————————————

8.14.8 write/2

8.14.8.1 Description

write(S or a, Term) is true iff
write term(S or a, Term, [numbervars(true)]).

8.14.8.2 Template and modes

write(@stream or alias, @term)

8.14.8.3 Errors

a) S or a is a variable

80

Term input/output

— instantiation error.

b) S or a is neither a variable nor a stream identifier or
alias
— domain error(stream or alias, S or a).

c) S or a is not associated with an open stream
— existence error(stream, S or a).

d) S or a is an input stream
— permission error(output, stream, S or a).

8.14.8.4 Examples

write(out, [1,2,3]).
Succeeds, outputting the characters

[1,2,3]
to the stream associated with the alias ’out’.

write(out, 1<2).
Succeeds, outputting the characters

1<2
to the stream associated with the alias ’out’.

write(out, ’1<2’).
Succeeds, outputting the characters

1<2
to the stream associated with the alias ’out’.

write(out, ’$VAR’(0)<’$VAR’(1)).
Succeeds, outputting the characters

A<B
to the stream associated with the alias ’out’.

————————————————————————

8.14.9 writeq/1

8.14.9.1 Description

writeq(Term) is true iff
(current output(S), writeq(S, Term)).

8.14.9.2 Template and modes

writeq(@term)

8.14.9.3 Errors

None.

————————————————————————

8.14.10 writeq/2

8.14.10.1 Description

writeq(S or a, Term) is true iff
write term(S or a, Term,

[quoted(true), numbervars(true)]).

8.14.10.2 Template and modes

writeq(@stream or alias, @term)

8.14.10.3 Errors

a) S or a is a variable
— instantiation error.

b) S or a is neither a variable nor a stream identifier or
alias
— domain error(stream or alias, S or a).

c) S or a is not associated with an open stream
— existence error(stream, S or a).

d) S or a is an input stream
— permission error(output, stream, S or a).

8.14.10.4 Examples

writeq(out, [1,2,3]).
Succeeds, outputting the characters

[1,2,3]
to the stream associated with the alias ’out’.

writeq(out, 1<2).
Succeeds, outputting the characters

1<2
to the stream associated with the alias ’out’.

writeq(out, ’1<2’).
Succeeds, outputting the characters

’1<2’
to the stream associated with the alias ’out’.

writeq(out, ’$VAR’(0)<’$VAR’(1)).
Succeeds, outputting the characters

A<B
to the stream associated with the alias ’out’.

————————————————————————

8.14.11 write canonical/1

8.14.11.1 Description

write canonical(T) is true iff
(current output(S), write canonical(S, T)).

8.14.11.2 Template and modes

write canonical(@term)

8.14.11.3 Errors

None.

————————————————————————

8.14.12 write canonical/2

8.14.12.1 Description

write canonical(S or a, Term) is true iff
write term(S or a, Term,

[quoted(true), ignore ops(true)]).

81

Term input/output

8.14.12.2 Template and modes

write canonical(@stream or alias, @term)

8.14.12.3 Errors

a) S or a is a variable
— instantiation error.

b) S or a is neither a variable nor a stream identifier or
alias
— domain error(stream or alias, S or a).

c) S or a is not associated with an open stream
— existence error(stream, S or a).

d) S or a is an input stream
— permission error(output, stream, S or a).

8.14.12.4 Examples

write_canonical(out, [1,2,3]).
Succeeds, outputting the characters

’.’(1,’.’(2,’.’(3,[])))
to the stream associated with the alias ’out’.

write_canonical(out, 1<2).
Succeeds, outputting the characters

<(1,2)
to the stream associated with the alias ’out’.

write_canonical(out, ’1<2’).
Succeeds, outputting the characters

’1<2’
to the stream associated with the alias ’out’.

write_canonical(out, ’$VAR’(0)<’$VAR’(1)).
Succeeds, outputting the characters

<(’$VAR’(0),’$VAR’(1))
to the stream associated with the alias ’out’.

————————————————————————

8.14.13 op/3

This predicate enables the predefined operators (see 6.3.4.4 and
table 5) to be altered during execution.

8.14.13.1 Description

op(Priority, Op specifier, Operator) is true.

Procedurally, op(Priority, Op specifier,
Operator) is executed as follows:

a) If Operator is an atom, creates the set Ops containing
just that one atom,

b) Else if Operator is a list of atoms, creates the set Ops
consisting of all the atoms in the list,

c) Chooses an element Op in the set Ops and removes it
from the set,

d) If Op is not currently an operator with the same operator
class (prefix, infix or postfix) as Op specifier, then proceeds
to 8.14.13.1 f,

e) The operator property of Op with the same class as
Op specifier is removed, so that Op is no longer an
operator of that class,

f) If Priority=0, proceeds to 8.14.13.1 h,

g) Op is made an operator with specifier Op specifier and
priority Priority,

h) If Ops is non-empty, proceeds to 8.14.13.1 c,

i) Else, the predicate succeeds.

In the event of an error being detected in an Operator list
argument, it is undefined which, if any, of the atoms in the list
is made an operator before the exception is raised.

NOTES

1 Operator notation is defined in 6.3.4. See also operator directives

(7.4.2.4).

2 A Priority of zero can be used to remove an operator property
from an atom.

3 It does not matter if the same atom appears more than once in an
Operator list; this is not an error and the duplicates simply have

no effect.

4 In general, the predefined operators can be removed, or their

priority can be changed. However, it is an error to attempt to change
the meaning of the , operator from its predefined status, see 6.3.4.3.

8.14.13.2 Template and modes

op(@integer, @operator specifier,
@atom or atom list)

8.14.13.3 Errors

a) Priority is a variable
— instantiation error.

b) Op specifier is a variable
— instantiation error.

c) Operator is a variable
— instantiation error.

d) Operator is a list with an element E which is a variable
— instantiation error.

e) Priority is neither a variable nor an integer
— type error(integer, Priority).

f) Op specifier is neither a variable nor an atom
— type error(atom, Op specifier).

g) Operator is neither a variable nor an atom nor a list
— type error(list, Operator).

h) An element E of the Operator list is neither a variable
nor an atom
— type error(atom, E).

i) Priority is not between 0 and 1200 inclusive
— domain error(operator priority, Priority).

82

Term input/output

j) Op specifier is not a valid operator specifier
— domain error(operator specifier,

Op specifier).

k) Operator is ’,’
— permission error(modify, operator,

Operator).

l) An element E of the Operator list is ’,’
— permission error(modify, operator, E).

m) Op specifier is a specifier such that Operator would
have an invalid set of specifiers (see 6.3.4.3)
— permission error(create, operator,

Operator).

8.14.13.4 Examples

op(30, xfy, ++).
Succeeds, making ++ a right associative

infix operator with priority 30.

op(0, yfx, ++).
Succeeds, making ++ no longer an

infix operator.

op(max, xfy, ++).
type_error(integer, max).

op(-30, xfy, ++).
domain_error(operator_priority, -30).

op(1201, xfy, ++).
domain_error(operator_priority, 1201).

op(30, XFY, ++).
instantiation_error.

op(30, yfy, ++).
domain_error(operator_specifier, yfy).

op(30, xfy, 0).
type_error(list, 0).

op(30, xfy, ++), op(40, xfx, ++).
Succeeds, making ++ a non-associative

infix operator with priority 40.

op(30, xfy, ++), op(50, yf, ++).
permission_error(create, operator, ++).
[There cannot be an infix and a

postfix operator with the same name.]

————————————————————————

8.14.14 current op/3

8.14.14.1 Description

current op(Priority, Op specifier, Operator) is true
iff Operator is an operator with properties defined by specifier
Op specifier and precedence Priority.

Procedurally, current op(Priority, Op specifier,
Operator) is executed as follows:

a) Searches the current operator definitions and creates a
set S of all the triples (P,Spec,Op) such that there is an
operator:

1) whose name, Op, unifies with Operator,

2) whose specifier, Spec, unifies with
Op specifier, and

3) whose priority, P, unifies with Priority,

b) If a non-empty set is found, proceeds to 8.14.14.1 d,

c) Else the predicate fails.

d) Chooses an element of the set S and the predicate
succeeds.

e) If all the elements of the set S have been chosen, then
the predicate fails,

f) Else chooses an element of the set S which has not
already been chosen, and the predicate succeeds.

current op(Priority, Op specifier, Operator) is re-
executable. On backtracking, continue at 8.14.14.1 e.

The order in which operators are found by current op/3 is
implementation dependent.

When the operator , (comma) is a member of the set S it is
represented by the atom ’,’.

NOTES

1 The definition above implies that if a program calls current op/3
and then modifies an operator definition by calling op/3, and then

backtracks into the call to current op/3, then the changes are
guaranteed not to affect that current op/3 goal. That is,
current op/3 behaves as if it were implemented as a dynamic

predicate whose clauses are retracted and asserted when op/3 is
called.

2 An operator Old op which has been removed by op(0,
Op specifier, Old op) is not found by current op/3.

8.14.14.2 Template and modes

current op(?integer, ?operator specifier,
?atom)

8.14.14.3 Errors

None.

8.14.14.4 Examples

current_op(P, xfy, OP).
If the predefined operators have not been

altered, then
Succeeds, unifying P with 1100,

and OP with ’;’.
On re-execution, succeeds unifying

P with 1050, and OP with ’->’.
On re-execution, succeeds unifying

P with 1000, and OP with ’,’.
[The order of solutions is

implementation dependent.]

————————————————————————

83

Term input/output

8.14.15 char conversion/2

8.14.15.1 Description

char conversion(Input char, Output char) is true.

Procedurally, char conversion(Input char,
Output char) is executed as follows:

a) If Input char is equal to Output char, the predicate
succeeds.

b) Else update the character-conversion relation with the
conversion (Input char ! Output char), and the predicate
succeeds.

NOTES

1 See also char-conversion directives (7.4.2.5).

2 A character Input char and Output char should be quoted

in order to ensure that they have not been converted by a
character-conversion directive when the Prolog text is read.

3 The character-conversion relation affects only characters read by term
input (8.14). When it is necessary to convert characters read by character
input/output built-in predicates (8.12), it will be necessary to program the

conversion explicitly using current char conversion/2 (8.14.16).

8.14.15.2 Template and modes

char conversion(@character, @character)

8.14.15.3 Errors

a) Input char is a variable
— instantiation error.

b) Output char is a variable
— instantiation error.

c) Input char is neither a variable nor a character
— type error(character, Input char).

d) Output char is neither a variable nor a character
— type error(character, Output char).

8.14.15.4 Examples

char conversion(’&’, ’,’)
Updates the char-conversion relation with (& ! ’,’) .
Succeeds.

char conversion(’’’, ’\’’)
Updates the char-conversion relation with (’ ! ’) where ’

is a character in an extended character set equivalent to the
single quote.

Succeeds.

char conversion(’a’, a)
Updates the char-conversion relation with (a ! a) where a

is a character in an extended character set equivalent to the
small letter character a.

Succeeds.

After these three goals, when the value associated with flag
char conversion is on, all occurrences of &, ’, and a as

unquoted characters read by term input predicates are converted
to ,, \, and a respectively, for example the three characters aaa
are converted to the characters aaa. However the characters
’aaa’ represent an atom aaa because they are enclosed by the
single quotes.

char conversion(’a’, ’a’)
Updates the char-conversion relation by removing the con-

version (a ! a).
Succeeds.

————————————————————————

8.14.16 current char conversion/2

8.14.16.1 Description

current char conversion(Input char,
Output char) is true iff the character-conversion relation

contains the conversion (Input char ! Output char).

Procedurally, current char conversion(Input char,
Output char) is executed as follows:

a) Creates a set S of all the conversions (In ! Out) in
the the current character-conversion relation such that:

1) In unifies with Input char, and

2) Out, unifies with Output char,

b) If a non-empty set is found, proceeds to 8.14.16.1 d,

c) Else the predicate fails.

d) Chooses an element of the set S which has not already
been chosen, unifies In with Input char, and Out with
Output char, and the predicate succeeds.

e) If all the elements of the set S have been chosen, then
the predicate fails,

f) Else proceeds to 8.14.16.1 d.

current char conversion(Input char,
Output char) is re-executable. On backtracking, continue

at 8.14.16.1 e.

The order in which character-conversions are found by
current char conversion/2 is implementation dependent.

NOTES

1 The definition above implies that if a program calls
current char conversion/2 and then modifies the character-

conversion relation by calling char conversion/2, and then
backtracks into the call to current char conversion/2,
then the changes are guaranteed not to affect that

current char conversion/2 goal.

2 A character-conversion (C ! CC) which has been re-

moved by char conversion(C, C) is not found by
current char conversion/2.

8.14.16.2 Template and modes

current char conversion(?character,
?character)

84

Logic and control

8.14.16.3 Errors

None.

8.14.16.4 Examples

current char conversion(C, a)
Assume the char-conversion relation is

(a ! a, a ! a),
Succeeds, unifying C with a.
On re-execution, succeeds, unifying C with a.

————————————————————————

8.15 Logic and control

These predicates are simply derived from the control constructs
(7.8) and provide additional facilities for affecting the control
flow during resolution.

8.15.1 fail if/1

8.15.1.1 Description

fail if(Term) is true iff call(Term) is false.

Procedurally, fail if(Term) is executed as follows:

a) Executes call(Term),

b) If it succeeds, the predicate fails,

c) Else if it fails, the predicate succeeds.

NOTE — A predicate with the same meaning as fail if/1 is

implemented in many existing processors with a name not/1 which
is misleading because the predicate gives negation by failure rather

than true negation. Other processors implement this feature with a
predicate \+/1.

8.15.1.2 Template and modes

fail if(@callable term)

8.15.1.3 Errors

a) Term is a variable
— instantiation error.

b) Term is neither a variable nor a callable term
— type error(callable, Term).

NOTE — Errors produced by the execution of the goal
fail if(Term) are regarded as errors in Term.

8.15.1.4 Examples

fail_if(true).
Fails.

fail_if(!).
Fails, the cut has no effect.

fail_if((!, fail)).

Succeeds, the cut has no effect.

(X=1; X=2), fail_if((!, fail)).
Succeeds, unifying X with 1.
On re-execution, succeeds unifying X with 2.

fail_if(4 = 5).
Succeeds.

fail_if(3).
type_error(callable, 3).

fail_if(X).
instantiation_error.

fail_if(X = f(X)).
Undefined.

————————————————————————

8.15.2 once/1

8.15.2.1 Description

once(Term) is true iff call(Term) is true.

Procedurally, once(Term) is executed as follows:

a) Executes call(Term),

b) If it succeeds, the predicate succeeds,

c) Else if it fails, the predicate fails.

NOTE — once(Term) behaves as call(Goal), but is not

re-executable.

8.15.2.2 Template and modes

once(+callable term)

8.15.2.3 Errors

a) Term is a variable
— instantiation error.

b) Term is neither a variable nor a callable term
— type error(callable, Term).

NOTE — Errors produced by the execution of the goal once(Term)
are regarded as errors in Term.

8.15.2.4 Examples

once(!).
Succeeds (the same as true).

once(!), (X=1; X=2).
Succeeds, unifying X with 1.
On re-execution, succeeds unifying X with 2.

once(repeat).
Succeeds (the same as true).

once(fail).
Fails.

once(X = f(X)).
Undefined.

85

Constant processing

————————————————————————

8.15.3 repeat/0

8.15.3.1 Description

repeat is true.

Procedurally, repeat succeeds.

repeat is re-executable.

8.15.3.2 Template and modes

repeat

8.15.3.3 Errors

None.

8.15.3.4 Examples

repeat, write("hello "), fail.
Writes

hello hello hello hello hello ...
indefinitely.

repeat, !, fail.
Fails, equivalent to (!, fail).

————————————————————————

8.16 Constant processing

These predicates enable constants to be processed as a sequence
of characters (7.1.4.1) and character codes (7.1.2.2). Facilities
exist to split and join atoms, and to convert a single character
to and from the corresponding character code, and to convert a
number to and from a list of characters.

NOTES

1 The characters forming an atom are defined in 6.1.2 b.

2 These predicates assume the characters of an atom can be
numbered: clause 6.1.2 b defines that the characters of a non-empty
atom are numbered from one upwards.

8.16.1 atom length/2

8.16.1.1 Description

atom length(Atom, Length) is true iff integer Length equals
the number of characters in the atom Atom.

Procedurally, atom length(Atom, Length) unifies Length
with the number of characters in Atom.

8.16.1.2 Template and modes

atom length(+atom, ?integer)

8.16.1.3 Errors

a) Atom is a variable
— instantiation error.

b) Atom is neither a variable nor an atom
— type error(atom, Atom).

c) Length is neither a variable nor an integer
— type error(integer, Length).

8.16.1.4 Examples

atom_length(’enchanted evening’, N).
Succeeds, unifying N with 17.

atom_length(’enchanted\
evening’, N).

Succeeds, unifying N with 17.

atom_length(’’, N).
Succeeds, unifying N with 0.

atom_length(’scarlet’, 5).
Fails.

atom_length(Atom, 4).
instantiation_error.

atom_length(1.23, 4).
type_error(atom, 1.23).

atom_length(atom, ’4’).
type_error(integer, ’4’).

————————————————————————

8.16.2 atom concat/3

8.16.2.1 Description

atom concat(Atom 1, Atom 2, Atom 12) is true iff the atom
Atom 12 is the atom formed by concatenating the characters of
the atom Atom 2 to the characters of the atom Atom 1.

Procedurally, atom concat(Atom 1, Atom 2, Atom 12) unifies
Atom 12 with the concatenation of Atom 1 and Atom 2.

atom concat(Atom 1, Atom 2, Atom 12) is re-executable
when only Atom 12 is instantiated. On re-execution successive
values for Atom 1 and Atom 2 are generated.

8.16.2.2 Template and modes

atom concat(?atom, ?atom, +atom)
atom concat(+atom, +atom, -atom)

8.16.2.3 Errors

a) Atom 1 and Atom 12 are variables
— instantiation error.

b) Atom 2 and Atom 12 are variables
— instantiation error.

c) Atom 1 is neither a variable nor an atom
— type error(atom, Atom 1).

86

Constant processing

d) Atom 2 is neither a variable nor an atom
— type error(atom, Atom 2).

e) Atom 12 is neither a variable nor an atom
— type error(atom, Atom 12).

8.16.2.4 Examples

In the examples below,

S1 = ’hello’,
S2 = ’ world’,
S4 = ’small world’.

atom_concat(S1, S2, S3).
Succeeds, unifying S3 with ’hello world’.

atom_concat(T, S2, S4).
Succeeds, unifying T with ’small’.

atom_concat(S1, S2, S4).
Fails.

atom_concat(T1, T2, S1).
Succeeds, unifying T1 with ’’,

and T2 with ’hello’.
On re-execution, succeeds,

unifying T1 with ’h’, and T2 with ’ello’.

atom_concat(small, S2, S4).
instantiation_error.

————————————————————————

8.16.3 sub atom/4

8.16.3.1 Description

sub atom(Atom, Start, Length, Sub atom) is true iff atom
Sub atom is the atom with Length characters starting at the
Start-th character of atom Atom.

Procedurally, sub atom(Atom, Start, Length,
Sub atom) unifies Sub atom with an atom Atom which has

Length characters identical with the Length characters of atom
Atom that start with the Start-th character of Atom.

sub atom(Atom, Start, Length, Sub atom) is re-executable.
On re-execution all possible values for Start, Length and
Sub atom are generated.

8.16.3.2 Template and modes

sub atom(+atom, ?integer, ?integer, ?atom)

8.16.3.3 Errors

a) Atom is a variable
— instantiation error.

b) Atom is neither a variable nor an atom
— type error(atom, Atom).

c) Sub atom is neither a variable nor an atom
— type error(atom, Sub atom).

d) Start is neither a variable nor an integer
— type error(integer, Start).

e) Length is neither a variable nor an integer
— type error(integer, Length).

8.16.3.4 Examples

sub_atom(’Banana’, 4, 2, S2).
Succeeds, unifying S2 with ’an’.

sub_atom(’charity’, _, 3, S2).
Succeeds, unifying S2 with ’cha’.
On re-execution, succeeds,

unifying S2 with ’har’.
On re-execution, succeeds,

unifying S2 with ’ari’.
On re-execution, succeeds,

unifying S2 with ’rit’.
On re-execution, succeeds,

unifying S2 with ’ity’.

sub_atom(’ab’, Start, Length, Sub_atom).
Succeeds, unifying Start with 1,

and Length with 0, and Sub_atom with ’’.
On re-execution, succeeds,

unifying Start with 1, and Length with 1,
and Sub_atom with ’a’.

On re-execution, succeeds,
unifying Start with 1, and Length with 2,
and Sub_atom with ’ab’.

On re-execution, succeeds,
unifying Start with 2, and Length with 0,
and Sub_atom with ’’.

On re-execution, succeeds,
unifying Start with 2, and Length with 1,
and Sub_atom with ’b’.

On re-execution, succeeds,
unifying Start with 3, and Length with 0,
and Sub_atom with ’’.

————————————————————————

8.16.4 atom chars/2

8.16.4.1 Description

atom chars(Atom, List) is true iff List is a list whose
elements are the characters corresponding to the successive
characters of atom Atom.

Procedurally, atom chars(Atom, List) is executed as follows:

a) If Atom is an atom then List is unified with a list
of characters which shall be identical to the sequence of
characters which form the abstract syntax of Atom (see
6.1.2 b),

b) Else if List is a list of characters, then Atom is unified
with the atom whose abstract syntax has the same sequence
of characters,

c) Else the predicate fails.

8.16.4.2 Template and modes

atom chars(+atom, +list)
atom chars(+atom, -list)
atom chars(-atom, +list)

87

Constant processing

8.16.4.3 Errors

a) Atom and List are variables
— instantiation error.

b) Atom is neither a variable nor an atom
— type error(atom, Atom).

c) List is neither a variable nor a list nor a partial list
— type error(list, List).

8.16.4.4 Examples

atom_chars(’’, L).
Succeeds, unifying L with [].

atom_chars([], L).
Succeeds, unifying L with [’[’, ’]’].

atom_chars(’’’’, L).
Succeeds, unifying L with [’’’’].

atom_chars(’ant’, L).
Succeeds, unifying L with

[’a’, ’n’, ’t’].

atom_chars(Str, [’s’, ’o’, ’p’]).
Succeeds, unifying Str with ’sop’.

atom_chars(’North’, [’N’ | X]).
Succeeds, unifying X with

[’o’, ’r’, ’t’, ’h’].

atom_chars(’soap’, [’s’, ’o’, ’p’]).
Fails.

atom_chars(X, Y).
instantiation_error.

————————————————————————

8.16.5 atom codes/2

8.16.5.1 Description

atom codes(Atom, List) is true iff List is a list whose
elements correspond to the successive characters of atom Atom,
and the value of each element is the character code for the
corresponding character.

Procedurally, atom codes(Atom, List) is executed as follows:

a) If Atom is an atom then List is unified with a list
of character codes (7.1.2.2) corresponding to a sequence
of characters which shall be identical to the sequence of
characters which form the abstract syntax of Atom (see
6.1.2 b),

b) Else if List is a list of character codes, then Atom is
unified with the atom whose abstract syntax has the sequence
of characters corresponding to the same list of character
codes,

c) Else the predicate fails.

8.16.5.2 Template and modes

atom codes(+atom, +list)

atom codes(+atom, -list)
atom codes(-atom, +list)

8.16.5.3 Errors

a) Atom and List are variables
— instantiation error.

b) Atom is neither a variable nor an atom
— type error(atom, Atom).

c) List is neither a variable nor a list nor a partial list
— type error(list, List).

8.16.5.4 Examples

atom_codes(’’, L).
Succeeds, unifying L with [].

atom_codes([], L).
Succeeds, unifying L with [0’[, 0’]].

atom_codes(’’’’, L).
Succeeds, unifying L with [0’’’].

atom_codes(’ant’, L).
Succeeds, unifying L with
[0’a, 0’n, 0’t].

atom_codes(Str, [0’s, 0’o, 0’p]).
Succeeds, unifying Str with ’sop’.

atom_codes(’North’, [0’N | X]).
Succeeds, unifying X with
[0’o, 0’r, 0’t, 0’h].

atom_codes(’soap’, [0’s, 0’o, 0’p]).
Fails.

atom_codes(X, Y).
instantiation_error.

————————————————————————

8.16.6 char code/2

8.16.6.1 Description

char code(Char, Code) is true iff the character code (7.1.2.2)
for the character Char is Code.

Procedurally, char code(Char, Code) unifies Code with
character code for the character Char.

8.16.6.2 Template and modes

char code(+character, +character code)
char code(+character, -character code)
char code(-character, +character code)

8.16.6.3 Errors

a) Char and Code are variables
— instantiation error.

b) Char is neither a variable nor a character (7.1.4.1)
— representation error(character).

88

Constant processing

c) Code is neither a variable nor a character code (7.1.2.2)
— representation error(character code).

8.16.6.4 Examples

char_code(’a’, Code).
Succeeds, unifying Code with the

character code for the character ’a’.

char_code(Str, 99).
Succeeds, unifying Str with the character

whose character code is 99.

char_code(Str, 0’c).
Succeeds, unifying Str with the character ’c’.

char_code(Str, 163).
If there is an extended character whose

character code is 163 then
Succeeds, unifying Str with that

extended character,
else

representation_error(character_code).

char_code(’b’, 84).
Succeeds iff the character ’b’ has the

character code 84.

char_code(’ab’, Int).
type_error(character, ab).

char_code(C, I).
instantiation_error.

————————————————————————

8.16.7 number chars/2

8.16.7.1 Description

number chars(Number, List) is true iff List is a list whose
elements are the characters corresponding to a character sequence
of Number which could be output (7.10.6 b, 7.10.6 c).

Procedurally, number chars(Number, List) is executed as
follows:

a) If List is a list of characters, then that sequence of
characters is parsed according to the syntax rules for numbers
and negative numbers (6.3.1.1, 6.3.1.2). If the parse is
successful, Number is unified with the resulting value, else
the predicate fails.

b) Else if Number is an integer or float, then List is
unified with a list of characters which shall be identical
to the sequence of characters which would be output by
write canonical(Number) (see 7.10.6 b, 7.10.6 c, 8.14.11),

c) Else the predicate fails.

NOTES

1 The sequence of characters ensures that, for every number X, the
following goal is true:

number chars(X,C), number chars(Y,C), X == Y.

2 This definition ensures that, the following goal is true:

C=[’.’, ’1’],
number chars(X,C), number chars(X,C).

8.16.7.2 Template and modes

number chars(+number, +list)
number chars(+number, -list)
number chars(-number, +list)

8.16.7.3 Errors

a) Number and List are variables
— instantiation error.

b) Number is neither a variable nor a number
— type error(number, Number).

c) List is neither a variable nor a list of characters
— domain error(character list, List).

d) List is not parsable as a number
— syntax error.

8.16.7.4 Examples

number_chars(33, L).
Succeeds, unifying L with [’3’, ’3’].

number_chars(33, [’3’, ’3’]).
Succeeds.

number_chars(33.0, L).
Succeeds, unifying L with an
implementation dependent list of characters,
e.g. [’3’, ’.’, ’3’, ’E’, +, ’0’, ’1’].

number_chars(X,
[’3’, ’.’, ’3’, ’E’, +, ’0’]).

Succeeds, unifying X with a value
approximately equal to 3.3.

number_chars(3.3,
[’3’, ’.’, ’3’, ’E’, +, ’0’]).

Implementation dependent: may succeed or fail.

number_chars(A, [-, ’2’, ’5’]).
Succeeds, unifying A with -25.

number_chars(A, [’\n’, ’ ’, ’3’]).
[The new line and space characters are

not significant.]
Succeeds, unifying A with 3.

number_chars(A, [’3’, ’ ’]).
Fails.

number_chars(A, [’0’, x, f])
Succeeds, unifying A with 15.

number_chars(A, [’0’, ’’’’, a])
Succeeds, unifying A with the
collating sequence integer for the
character ’a’.

number_chars(A, [’4’, ’.’, ’2’]).
Succeeds, unifying A with 4.2.

number_chars(A,
[’4’, ’2’, ’.’, ’0’, ’e’, ’-’, ’1’]).

Succeeds, unifying A with 4.2.

————————————————————————

89

Implementation defined hooks

8.16.8 number codes/2

8.16.8.1 Description

number codes(Number, List) is true iff List is a list whose
elements are the character codes corresponding to a character
sequence of Number which could be output (7.10.6 b, 7.10.6 c).

Procedurally, number codes(Number, List) is executed as
follows:

a) If List is a list of character codes, then the sequence of
characters corresponding to those character codes is parsed
according to the syntax rules for numbers and negative
numbers (6.3.1.1, 6.3.1.2). If the parse is successful, Number
is unified with the resulting value, else the predicate fails.

b) Else if Number is an integer or float, then List is unified
with a list of character codes corresponding to a sequence of
characters which shall be identical to the sequence of characters
which would be output by write canonical(Number) (see
7.10.6 b, 7.10.6 c, 8.14.11),

c) Else the predicate fails.

NOTE — The sequence of character codes representing the characters

of a number shall be such that for every value X, the following goal
is true:

number codes(X, C), number codes(Y, C), X==Y.

8.16.8.2 Template and modes

number codes(+number, +list)
number codes(+number, -list)
number codes(-number, +list)

8.16.8.3 Errors

a) Number and List are variables
— instantiation error.

b) Number is neither a variable nor a number
— type error(number, Number).

c) List is neither a variable nor a list of character codes
— domain error(character code list, List).

d) List is not parsable as a number
— syntax error.

8.16.8.4 Examples

number_codes(33, L).
Succeeds, unifying L with [0’3, 0’3].

number_codes(33, [0’3, 0’3]).
Succeeds.

number_codes(33.0, L).
Succeeds, unifying L with an
implementation dependent list of characters,
e.g. [0’3, 0’., 0’3, 0’E, 0’+, 0’0, 0’1].

number_codes(33.0,
[0’3, 0’., 0’3, 0’E, 0’+, 0’0, 0’1]).

Implementation dependent: may succeed or fail.

number_codes(A, [0’-, 0’2, 0’5]).
Succeeds, unifying A with -25.

number_codes(A, [0’ , 0’3]).
[The space character is not significant.]
Succeeds, unifying A with 3.

number_codes(A, [0’0, 0’x, 0’f])
Succeeds, unifying A with 15.

number_codes(A, [0’0, 0’’’, 0’a])
Succeeds, unifying A with the

collating sequence integer for the
character ’a’.

number_codes(A, [0’4, 0’., 0’2]).
Succeeds, unifying A with 4.2.

number_codes(A,
[0’4, 0’2, 0’., 0’0, 0’e, 0’-, 0’1]).

Succeeds, unifying A with 4.2.

————————————————————————

8.17 Implementation defined hooks

These built-in predicates enable a program to find the current
value of any flag (7.11), and to change the current value of
some flags.

8.17.1 set prolog flag/2

8.17.1.1 Description

set prolog flag(Flag, Value) is true iff:

a) Flag is a flag, and

b) Value is a value that is within the implementation
defined range of values for Flag.

Procedurally, set prolog flag(Flag, Value) is executed as
follows:

a) If Flag is a flag (7.11), and Value is a value that is
within the implementation defined range of values for Flag,
proceeds to 8.17.1.1 c,

b) Else the predicate fails.

c) Associates the value Value with the flag Flag, and the
predicate succeeds.

8.17.1.2 Template and modes

set prolog flag(@flag, @term)

8.17.1.3 Errors

a) Flag is a variable
— instantiation error.

b) Value is a variable
— instantiation error.

c) Flag is neither a variable nor an atom
— type error(atom, Flag).

90

Implementation defined hooks

d) Flag is an atom but is invalid in the processor
— domain error(prolog flag, Flag).

e) Value is inappropriate for Flag
— domain error(flag value, Flag + Value).

8.17.1.4 Examples

set_prolog_flag(undefined_predicate, fail).
Succeeds, associating the value fail
with flag undefined_predicate.

set_prolog_flag(X, off).
instantiation_error.

set_prolog_flag(5, decimals).
type_error(atom, 5).

set_prolog_flag(date, ’July 1988’).
domain_error(flag, date).

set_prolog_flag(debug, trace).
domain_error(flag_value, debug+trace).

————————————————————————

8.17.2 current prolog flag/2

8.17.2.1 Description

current prolog flag(Flag, Value) is true iff Flag is a flag
supported by the processor, and Value is the value currently
associated with it.

Procedurally, current prolog flag(Flag, Value) is executed
as follows:

a) Searches the current flags supported by the processor and
creates a set S of all the terms flag(F, V) such that (1)
there is a flag F which unifies with Flag, and (2) the value
V currently associated with F unifies with Value,

b) If a non-empty set is found, proceeds to 8.17.2.1 d,

c) Else the predicate fails.

d) Chooses an element of the set S and the predicate
succeeds.

e) If all the elements of the set S have been chosen, then
the predicate fails,

f) Else chooses an element of the set S which has not
already been chosen, and the predicate succeeds.

current prolog flag(Flag, Value) is re-executable. On
re-execution, continue at 8.17.2.1 e above.

The order in which flags are found by
current prolog flag(Flag, Value) is implementation de-
pendent.

NOTE — All flags are found, whether defined by this draft International

Standard or implementation defined.

8.17.2.2 Template and modes

current prolog flag(?flag, ?term)

8.17.2.3 Errors

a) Flag is not a variable or an atom
— type error(atom, Flag).

8.17.2.4 Examples

current_prolog_flag(debug, off).
Succeeds iff the value currently associated
with the flag ’debug’ is ’off’.

current_prolog_flag(F, V).
Succeeds, unifying ’F’ with one of the
flags supported by the processor, and ’V’
with the value currently associated with
the flag ’F’.
On re-execution, successively unifies ’F’
and ’V’ with each other flag supported by
the processor and its associated value.

current_prolog_flag(5, _).
type_error(atom, 5).

————————————————————————

8.17.3 halt/0

8.17.3.1 Description

Procedurally, halt is executed as follows:

a) Exits from the processor,

b) Returns to whatever system invoked Prolog.

Any other effect of halt/0 is implementation defined.

NOTE — This predicate neither succeeds nor fails.

8.17.3.2 Template and modes

halt

8.17.3.3 Errors

None.

8.17.3.4 Examples

halt.
Implementation defined.

————————————————————————

8.17.4 halt/1

8.17.4.1 Description

Procedurally, halt(X) is executed as follows:

a) Exits from the processor,

b) Returns to whatever system invoked Prolog passing the
value of X as a message.

91

The simple arithmetic functors

Any other effect of halt/1 is implementation defined.

NOTE — This predicate neither succeeds nor fails.

8.17.4.2 Template and modes

halt(@integer)

8.17.4.3 Errors

a) X is a variable
— instantiation error.

b) X is neither a variable nor an integer
— type error(integer, X).

8.17.4.4 Examples

halt(1).
Implementation defined.

halt(a).
type_error(integer, a).

————————————————————————

9 Evaluable functors

This clause defines the evaluable functors which shall be
implemented by a standard-conforming Prolog processor.

9.1 The simple arithmetic functors

The basic arithmetic functions are defined mathematically in the
style, and conforming with the requirements, of IS10967-1.

9.1.1 Evaluable functors and operations

Each evaluable functor corresponds to one or more operations
according to the types of the values which are obtained by
evaluating the argument(s) of the functor.

The following table identifies the integer or floating point
operations corresponding to each functor:

Evaluable functor Operation
’+’/2 add

I

, add
F

, add
FI

, add
IF

’-’/2 sub

I

, sub
F

, sub
FI

, sub
IF

’*’/2 mul

I

, mul

F

, mul

FI

, mul

IF

’//’/2 intdiv

I

’/’/2 div

F

, div
II

, div
FI

, div
IF

rem/2 rem

I

mod/2 mod

I

’-’/1 neg

I

, neg
F

abs/1 abs

I

, abs
F

sqrt/1 sqrt

I

, sqrt
F

sign/1 sign

I

, sign
F

float truncate/2 trunc

F

float round/2 round

F

float integer part/1
intpart

F

float fractional part/1
fractpart

F

float/1 float

I!F

; f loat

F!F

floor/1 floor

F!I

truncate/1 truncate

F!I

round/1 round

F!I

ceiling/1 ceiling

F!I

NOTE — ’+’, ’-’, ’*’, ’//’, ’/’, ’rem’, ’mod’ are infix

predefined operators (see 6.3.4.4).

9.1.2 Integer operations and axioms

The following operations are specified:

add

I

: I � I ! I [foverowg

sub

I

: I � I ! I [foverowg

mul

I

: I � I ! I [foverowg

intdiv

I

: I � I ! I [foverow; zero divisorg

rem

I

: I � I ! I [fzero divisorg

mod

I

: I � I ! I [fzero divisor;unde�nedg

neg

I

: I ! I [foverowg

abs

I

: I ! I [foverowg

sign

I

: I ! I

The behaviour of the integer operations are defined in terms of
a rounding function rnd

I

(x) (see 9.1.2.1).

For all values x and y in I , the following axioms shall apply:

add

I

(x; y) = x+ y if x+ y 2 I

= overow if x+ y 62 I

sub

I

(x;y) = x� y if x� y 2 I

= overow if x� y 62 I

mul

I

(x;y) = x � y if x � y 2 I

= overow if x � y 62 I

intdiv

I

(x; y) = rnd

I

(x=y)

if y 6= 0 and rnd

I

(x=y) 2 I

= overow

if y 6= 0 and rnd

I

(x=y) 62 I

= zero divisor

if y = 0

rem

I

(x; y) = x� (rnd

I

(x=y) � y)

if y 6= 0
= zero divisor

if y = 0

mod

I

(x;y) = x� (bx=yc � y)

if y 6= 0
= zero divisor

if y = 0

neg

I

(x) = �x if �x 2 I

= overow if �x 62 I

abs

I

(x) = jxj if jxj 2 I

= overow if jxj 62 I

sign

I

(x) = 1
if x � 0

= �1
if x < 0

NOTE — IS 10967 (LIA) permits mod

I

to have one or both

definitions of mod

1
I

and mod

2
I

:

92

